原刊登於新創幫

臺北醫學大學人工智慧醫療研究中心由陳震宇副校長帶領,開發出人工智慧多模影像精準健康平台-「Deep-Lung」,只要進行一次胸腔低劑量CT取像,就可透過自創的AI模型同時預測骨鬆、肺癌、慢性阻塞性肺病和心臟冠狀動脈鈣化的風險,準確率超過9成,並可自動產出符合國際標準的建議報告,為全球首創。負責平台整合的醫師陳彥廷表示,在醫院端驗證時,這個平台已經多次揪出臨床醫師未能標註到或是漏掉的肺部結節…

臺灣人口老化速度日益漸增,國發會預估,2025年臺灣65歲以上老年人口占比超過20%,將邁入超高齡社會。根據衛福部統計,癌症為65歲以上人口頭號死因,其中肺癌高居首位,心臟疾病、慢性阻塞性肺病和跌倒事故亦名列前茅。有鑑於此,北醫大陳震宇教授帶領校級人工智慧醫療研究中心團隊開發出人工智慧多模影像精準健康平台-「Deep-Lung」,針對中高齡國人的醫療影像,提供All-in-One檢測,快速、精準評估肺、心、骨相關疾病風險。

※圖為DeepRad.AI團隊執行長陳震宇教授。(照片來源:臺北醫學大學提供)

北醫的「Deep-Lung」引擎包含四大模組:LungRads模組、CAC模組、BMD模組、COPD模組,能有效的一次性評估中老年人在肺癌篩檢、肺氣腫現象、冠狀動脈鈣化和脊椎骨骨折的風險或程度,甚至可協助放射科醫師輔助診斷並產出報告與治療策略,陳震宇受訪時提到,該平台結合人工智慧技術,大幅改善以往放射師以肉眼進行斷層掃瞄的效率及正確率,而這也是未來發展個人化精準醫療的趨勢。

傳統上,肺、心、骨四項檢測與診斷時間總共需時近6小時,更會使病患接觸大量輻射,而透過Deep-Lung的All-in-One引擎,只要進行一次胸腔LDCT(低劑量電腦斷層掃描)的取像,再以其AI模型分析影像,大約10分鐘左右就能同時能檢測肺、心、骨問題並自動化提出臨床上的治療建議,減輕醫療院所人力需求,也大幅降低病人的輻射接觸量。

※圖為Deep-Lung的AI多模影像精準健康平台概念圖。(照片來源:臺北醫學大學提供)

此外,該平台的模擬器是以商之器系統打造,可相容於大多數平台,直接與醫院PACS系統架接,醫師可直接使用產出後的報告,不改變現有臨床檢驗流程,也不需特別學習操作。未來該平台將持續擴建至國內外各大醫院放射科,並同時創建線上雲端網頁版供民眾使用。目前合作足跡已橫跨全球,除與北部雙和醫院、彰化基督教醫院合作以外,也與日本北海道大學及美國UCIrvine醫院進行臨床場域驗證。

然而,由於人口快速老化,未來醫療人力將減少20%以上,陳震宇也坦言,人工智慧的角色勢必將更加吃重。他提到,北醫未來在針對人口老化方面有三大布局,首先是透過人工智慧輔助針對亞健康時期進行篩檢。而第二大布局則是肺癌,除Deep-Lung平台外,北醫團隊再度打造全球首創「肺癌臨床智能決策輔助系統」,透過人工智慧分析臨床影像,結合基因資料,提供個人化用藥建議,可望大幅提高治療成效。第三大布局則是失智,根據布羅德曼分區(Brodmann area),大腦有40幾個功能區,而大腦皮質會因退化疾病而在不同的區域變薄,透過3D影像分析,加上年齡、性別等基因參數,就可以看出該種退化是屬於何種形式,進而預測是否未來是否失智以及可能發生失智的時間。

此外,北醫也和醫療科技新創雲象科技及其他多家企業合作,開發出AI輔助免人工標註全玻片判讀肺癌數位病理影像模型,將癌症病灶視覺化,以及「病理報告自然語言處理(NLP)自動判讀選藥建議系統」與「肺腺癌全基因用藥建議模型」。病人的病理報告出爐後,透過NLP技術從文字中分析臨床關注的50項特徵,再篩選出跟病患情況相似、且預後最佳的選藥治療建議。

陳震宇教授表示,該中心成立的淵源是北醫決定從研究型大學轉型為創新型大學,希望透過臨床上的轉移幫助病人,並以「以終為始」為初衷,也就是做研究先想著目標。該中心自2019年成立以來培養出200多個人工智慧研究團隊,目前成立了5家人工智慧新創公司,領域包括智慧醫療影像、智慧用藥安全、睡眠照護、精準健康、數位病理、智慧重症、骨質偵測系統等。除屢獲國家型計畫支持,也積極參與產學及跨國合作,目標是成為亞洲最具特色的AI醫療研究中心,甚至是打造AI醫院。目前團隊正積極爭取科技部價創計畫,期望持續擴大未來創新量能。而他也坦言,台灣目前法規窒礙難行,病患數據應用於商轉用途不易,加上募資困難,目前新創大環境還有進步的空間,如能結合ICT的產業能量,加上國際化的串接,相信能培養出更多如韓國Vuno、Lunit等從大學團隊成功產業化的新創公司。

※圖為DeepRad.AI團隊合影,右3為團隊執行長陳震宇教授、右4為營運長陳彥廷醫師。(照片來源:臺北醫學大學提供)